Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a Heavy Duty On-Highway Natural Gas-Fueled Engine

1992-10-01
922362
A heavy-duty 320 kW diesel engine has been converted to natural gas operation. Conversion technology was selected to minimize costs while reaching NOx emissions goals of less than 3.2 g/kW-hr. Two engines are being converted using quiescent and high swirl combustion systems. The first engine with low swirl cylinder heads of the base diesel engine, and a combustion system developed for it was tested on a steady state cycle that has been shown to simulate the US heavy duty transient test cycle. It shows NOx emissions of 2.9 g/kW-hr and total HC emissions of 5.4 g/kW-hr. It is suspected that the HC emission is high because of high valve overlap. Experience with other similar engines suggests that non-methane HC emission is about 0.4-0.8 g/kW-hr. It is also expected that modified valve events and/or an oxidation catalyst can reduce HC emissions to much lower levels. The efficiency of the low swirl natural gas engine at this NOx level is 36 percent at rated condition.
Technical Paper

Fuel Issues for Liquefied Natural Gas Vehicles

1992-10-01
922360
Natural gas vehicle (NGV) fuel energy storage density is a key issue, particularly in many heavy-duty applications where compressed natural gas may have unattractively low energy density. For these uses, benefits can be derived by using liquefied natural gas (LNG). From a market perspective, LNG can play a role for transportation because it is available in various areas of the United States and throughout the world. This paper provides a general overview of LNG use for vehicles and specifically an analysis of factors governing the behavior of this cryogenic fluid in a confined vessel. This is intended to provide an understanding of the cause/effect relation between LNG fuel composition, tank heat influx, and rate of fuel usage or storage time.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
Technical Paper

The Aerodynamic Development of the Probe IV Advanced Concept Vehicle

1983-06-06
831000
The aerodynamic development and characteristics of a four-passenger advanced concept automobile are described. An overview of the areas of the vehicle design which were dealt with to obtain a drag coefficient value of 0.153 is provided. The interior packaging philosophy is outlined which led to the potential for packaging four to six passengers within an extremely low drag automobile. Parametric shape studies of the major surface design elements are documented from the contributing development testing. The particular design treatments adopted and the rationale behind the choice of design are examined for each of the aerodynamically-sensitive areas of the vehicle. Examinations of the unique solutions to vehicle cooling, ramp and curb clearance, front wheel skirting and vehicle attitude are presented. Full scale wind tunnel data is shown for the configurations examined and vehicle stability parameters compared with conventional vehicles.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Steady-State and Transient Engine Tests with a Five Percent Water-in-Fuel Microemulsion

1983-02-01
830555
This paper is the fourth in a series describing work sponsored by the Bureau of Mines to reduce diesel particulate and gaseous emissions through fuel modification. A stabilized water microemulsion fuel developed in previous work was tested in a Caterpillar 3304 NA four-cylinder engine with compression ratio and injection timing and rate optimized for this fuel to demonstrate the emissions reductions achieved. It was tested in both standard and optimum configurations with both baseline DF-2 and optimized microemulsion fuels. Gaseous and particulate data are presented from steady-state tests using a computer-operated mini-dilution tunnel and from transient tests using a total exhaust dilution tunnel. The optimized engine-fuel combination was effective in reducing particulates and oxides of nitrogen in steady-state tests. However, the standard engine-fuel combination provided the lowest particulate and NOx emissions in transient tests.
Technical Paper

Performance and Emissions of Ethanol and Ethanol-Diesel Blends in Direct-Injected and Pre-Chamber Diesel Engines

1982-02-01
821039
Fumigation, inline mixing, chemically stabilized emulsions and cetane improvers were evaluated as a means of using ethanol in diesel engines. Two turbocharged six-cylinder engines of identical bore and stroke were used, differing in combustion chamber type. Three alcohol proofs were evaluated: 200, 190, and 160. Alcohol was added at the following concentrations: 10, 25, and 50% except in the case of the cetane-improved alcohol. In the latter case a commercial ignition improver for diesel fuel, DII-3, was added to neat alcohol in the proportions of 10, 15, and 20%. Generally, the emissions of CO, total hydrocarbons, and oxides of nitrogen reflected the trends observed in the thermal efficiencies. At light loads, CO and HC emissions were higher than baseline, decreasing to near baseline levels at heavy loads accompanied with higher NOx.
Technical Paper

50,000 Mile Vehicle Road Test of Three-Way and NOx Reduction Catalyst Systems

1978-02-01
780608
The performance of three way and NOx catalysts was evaluated on vehicles utilizing non-feedback fuel control and electronic feedback fuel control. The vehicles accumulated 80,450 km (50,000 miles) using fuels representing the extremes in hydrogen-carbon ratio available for commercial use. Feedback carburetion compared to non-feedback carburetion improved highway fuel economy by about 0.4 km/l (1 mpg) and reduced deterioration of NOx with mileage accumulation. NOx emissions were higher with the low H/C fuel in the three way catalyst system; feedback reduced the fuel effect on NOx in these cars by improving conversion efficiency with the low H/C fuel. Feedback had no measureable effect on HC and CO catalyst efficiency. Hydrocarbon emissions were lower with the low H/C fuel in all cars. Unleaded gasoline octane improver, MMT, at 0.015g Mn/l (0.06 g/gal) increased tailpipe hydrocarbon emissions by 0.05 g/km (0.08 g/mile).
X